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Autonomy is an emerging paradigm for the design and implementation of managed
services and systems. Self-managed aspects frequently concern the communication of sys-
tems with their environment. Self-management subsystems are critical, they should thus be
designed and implemented as high-assurance components. Here, we propose to use GEAR,
a game-based model checker for the full modal μ-calculus, and derived, more user-oriented
logics, as a user friendly tool that can offer automatic proofs of critical properties of such sys-
tems. Designers and engineers can interactively investigate automatically generated winning
strategies resulting from the games, this way exploring the connection between the property,
the system, and the proof. The benefits of the approach are illustrated on a case study that
concerns the ExoMars Rover.

I. Motivation

SINCE its inception, a central challenge to the IT industry is the ability to deliver increasingly complex and
increasingly reliable systems. Systems that both are composed of complex parts and that provide rich communi-

cation capabilities become more and more heterogeneous. Thus the management of such systems is an increasingly
critical and daunting problem. The adequate control of the interaction between the subsystems and the environment
is one of the main issues in the development of upcoming systems [1–3]. However, the space of such interactions is
so huge, that developers of these systems cannot oversee it adequately anymore. Tools can provide enormous help
by narrowing down the universe of possible alternatives and decisions to the critical amount a single developer is
able to handle. In the past this has proven to be extremely useful in critical areas like hardware design and large
telecommunication systems. The usage of tools and techniques that support the development process and guide the
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developer while deciding how to integrate highly reliable and interacting components constitutes an essential help
for the outcome of the overall development process.

Dealing with interactions between loosely coupled system components is of critical importance in the context of
space systems [4]. These systems are not controlled by humans directly, but rather communicate with a ground control
center on Earth that steers the mission. In this situation, the natural demand for autonomy and autonomy-supporting
development techniques is evident: ground-controlled systems cannot assist in situations where immediate decisions
are required. As an example, the self-protecting local navigation of a spacecraft that examines an extra-terrestrial
surface has to avoid particles flying around and endangering the spacecraft. Such kind of reaction has to be carried
out by the spacecraft itself and cannot be controlled from the ground control.

In long-distance missions, communication between ground-control and the mission entity is additionally burdened
by transmission latencies of several seconds up to tens of minutes. Thus direct communication between ground-control
and the spacecraft for reacting to sudden unexpected events becomes unfeasible.

A third issue to consider are disturbances and total breakdowns of communication due to solar storms that affect
radio. In these situations the spacecraft has to operate in isolation, until the connection can be reestablished.

All three scenarios have in common that reliable systems—especially systems in space—must be able to rely
on themselves. Hence there is a strong need for autonomic decisions and behavior for these systems, especially for
long-term and long-distance missions.

As a consequence
1) The interaction of components or whole systems must be managed autonomously, either by foreseeing the

possible events and designing the system in a way that it is capable of coping with the foreseen events, or by
equipping the system with means to tackle the actual challenges independent of specific scenarios. In this
second case we speak of emergent autonomy.

2) System developers should be guided by tools and techniques to be constantly aware of the critical (autonomy-
oriented) properties that the system has to satisfy. Since it can be very hard to anticipate all possible system
evolutions, the tools must be able to explain to the developer reasons for their analyzes, in order to ensure a
deep understanding of the system and to provide sufficient means for a targeted countermeasure.

In this paper, we show how to use GEAR [5–8], a game-based model checker for the full modal μ-calculus, as a
user friendly tool that can offer automatic proofs of critical properties of such systems. Designers and engineers can
interactively investigate the winning strategies resulting from games. These reveal in-depth information about the
connection between the property, the system, and the proof, both as explanation in case of a successful proof, and as
detailed, fine granular error diagnostics in the case of failure.

The benefits of the approach are illustrated on a case study that concerns the design of the task-level control part
of the processes of the ExoMars Rover [9],which was designed as part of an European Space Agency (ESA) project.
Here we focus on a central property pattern for remote/autonomous (space) systems, with the intuitive meaning that
these systems cannot run into situations where they cannot recover, even with ground support from Earth.

Game-based model checking is an established field of logics and theoretical computer science. Lange and Stir-
ling [10,11] have focused on the application of games to branching-time temporal logics, such as CTL∗. Stirling also
introduced the notion of a verifier and a refuter, the game players we call prover and disprover.

The strategies that provide the background for the rationale used in our work stem from the work of Müller-Olm
and Yoo [12,13] while first steps in the direction of game-based μ-calculus model checking were already taken by
Emerson et al. [14]. There have also been approaches to the synthesis of game strategies by Vöge [15].

However most of the work concentrates on the theoretical questions, like expressivity and complexity, and on
the algorithmic or tool-related aspects. In contrast, we are mainly interested in the application of these techniques
to provide fine granular diagnostic capabilities that enhance modeling and development environments for high-
assurance systems.

Before we explain our modeling and verification approach, we briefly present the concrete case study.

II. Case Study: The ExoMars Rover
ESA’s FORMID Project (FOrmal Robotic Mission Inspection and Debugging) aimed at creating a development

environment for the verification and analysis of robotic missions [16]. In the concrete mission example [9], a robot
(the ExoMars Rover) is sent on a surface mission on Mars where it has to accomplish several tasks, including the
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Fig. 1 Three-dimensional model of the ExoMars Rover at the International Aerospace Exhibition ILA 2006.

acquisition of subsurface soil samples using a drill. A three-dimensional model (shown in Fig. 1) [9] was created
for simulation purposes. In this case study, the mission is organized in a hierarchical way, which accounts for
partial autonomy of the rover. Mission plans are designed and enforced by the ground control, while finer-grained
operational decisions, at the task level, are completely autonomous: the rover has own planning capabilities, which
allow it to transform a task assignment into a suitable executable sequence of actions in a context dependent and
error-aware way.

The functional reference model of the control architecture was realized in FORMID, internally using Esterel as
a high-level specification language [17]. FORMID allows the specification of tasks and actions and of properties
to be checked, the discrete event simulation with visual debugging of the scenarios, and to generate the code to be
uploaded to the robot controller.

The kind of formal verification considered in the ESA study concerns predefined patterns of safety, liveness, and
conflict-freedom properties. Then, an observer module for each property is generated, that spies the system model
to detect violations. In that case, a violating scenario is returned to the designer.

In this paper we illustrate the power of our game-based model checker GEAR on central property pattern for
remote/autonomous (space) systems, with the intuitive meaning that such systems cannot run into situations from
which they cannot recover, even with the ground support from Earth. We formalize an alternative formulation of this
pattern, which expresses the following:

Where ever the system evolves to, it is always possible to recover.

This property pattern is branching-time in nature, and cannot be expressed in linear-time logic, as it comprises
both

1) a universally quantified part: Where ever the system evolves to, and
2) an existentially quantified part: it is always possible to recover.
In the following, we first show how we model the ExoMars Rover surface mission in the jABC [18,19], our

service-oriented modeling and verification environment, according to the description provided in [9]. Subsequently
we discuss in depth the technique of game-based model checking using the properties already considered in the ESA
case study.

III. Service-oriented Models of the ExoMars Behavior
The three-tier control model presented in [9] concerns a Mission, a Task, and an Action level.
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A. The Mission
The ExoMars Rover mission is to explore the Martian surface and in doing so to collect interesting soil samples

which are acquired using a drill. Problems may occur, for example when the drill gets blocked and the Rover is no
longer able to act according to its agenda.

The Rover’s surface mission consists of three main phases:
1) in the Critical Deployment phase the operational set up is established (solar power acquisition, communica-

tion),
2) in the Egress phase the Rover leaves the lander dock to start surface operations, and
3) in the actual Surface Operations phase the rover travels to the next sampling location, performs the required

measurements and operations, and transmits the relevant data to the Earth.
Figure 2 sketches this high-level behavioral model as it appears in the jABC, our environment for model-driven,

service-oriented system design. There, we have modeled the whole Mission as a top-level service, consisting of
the sequence of tasks Land, CriticalDeployment, and Egress followed by a choice of operational tasks, like
AcquireSamples, the task described later in detail.

Technically, the jABC way of modeling matches very closely the intentions of the ExoMars designers: in the
original description style, typical of (autonomous) three-tier controlled systems (see Fig. 3), elementary Actions
constitute re-usable, basic building blocks of behavior. They are organized in libraries and are composable into
Tasks, structured as flow graphs of Actions. Mission plans are then in turn composed of Tasks in a similar fashion,
leading to a hierarchical model structure.

We also see in Fig. 3 that central attention is devoted to exception handling: Type 1 events are locally processed
in the Action. Type 2 exceptions are treated in the Task, resulting in a switch to a different Action under nominal
conditions and a new Task in case of failure. Type 3 exceptions lead to a mission abortion through safety behavior
which is context dependent.

Both, exception handling and reaction in the course of autonomous behavior (this is located at Task level) concern
behavioral rules and properties that must be ensured reliably. Our work addresses exactly these issues: how to
formulate such properties in a declarative way, and how to provide detailed analysis, verification, and diagnostic
capabilities in order to check their fulfillment and help repair them at design time.

Recoverability is a mission critical central issue. Tasks are defined as ‘a standalone entity that propagates only
unrecoverable errors outside its scope’, thus we show here how to formulate and check a recoverability requirement
on a task-level behavioral model within the jABC.

In the jABC, we see the executable actions as basic services providing atomic units of behavior, called Service
Independent Building blocks (SIBs), organized in sharable collections called SIB palettes. Behavioral models that
coordinate actions or tasks express the logic of composite services in terms of flow graphs with fork/join parallelism,

Fig. 2 Service logic graph of the Rover mission’s process.

103



BAKERA ET AL.

Fig. 3 Three layer abstraction: model layers and exceptions (from [9]).

called Service Logic Graphs (SLGs). Figure 2 shows the Mission SLG, expanded to its top Task level. The interpre-
tation is intuitive: once the rover is successfully landed it proceeds to the Egress phase. Once this is completed, it
proceeds with one of the operations, for example AcquireSamples. Subsequently, when a Task has been completed,
a different Task may be initiated.

In the following we briefly examine the three main tasks.

B. Critical Deployment and Egress
The model of the Critical Deployment task shown in Fig. 4 has been built according to the verbal description

of [9]. Once the ExoMars Rover has landed, it performs an initial Self-Check. If this is successful, it proceeds to the
deployment of solar arrays (subtask DeploySolarArray) in order to ensure proper power provisioning, and it deploys
an antenna (DeployAntenna) used to communicate with the support on Earth. Given that the planetary constellation
may impede Rover-ground communications, the Rover may shut down (Wait) until a favorable time window occurs.
Once communication has been established, the Rover transmits the necessary data collected during Entry, Descent,
and Landing along with some information about the preceding deployment (TransmitDeploymentData).

Fig. 4 The Critical Deployment task.
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Fig. 5 The acquire samples service logic graph.
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The next step is the planning of the actual Egress Task. To this aim, a panorama-camera is deployed (Deploy-
PanCam) and the resulting survey of the surrounding landscape (DoSurvey) helps ground personnel to devise a plan
for the actual egression. Supporting technology is available to allow the Rover to leave the lander dock safely and
unharmed. We have abstained from explicitly modeling the accompanying communication with ground support for
the sake of simplicity.

The actual egression from the lander dock (Egress Task) is initiated by minor adjusting maneuvers, to bring the
Rover in the best possible position for the egress path planned by the ground support on Earth. The Rover leaves the
lander dock using this predefined path. Final preparation of Rover equipment, such as the drill subsystem, concludes
the Egress Task.

We have decided not to refine the Egress Task and focus instead on the actual core process: the collection of
soil samples.

C. Acquire Samples
Figure 5 shows our model of the Acquire Samples surface operations task, intentionally closely resembling the

original description from [9].
In this phase, the Rover examines one by one a number of sampling locations of interest previously defined by

ground support. It autonomously travels to the next interesting working area and performs a panoramic investiga-
tion of the site. Based on the results, specific targets for subsurface sample acquisition are identified and further
investigated. This is accomplished by first cleaning up the target area and performing some measurements which—
if sufficiently promising—justify the actual extraction of a sample. The extraction process itself is shown in the
SubsurfAcquireSample box of Fig. 5. The task-level model uses the following actions (elementary SIBs):

1) DrillMoveTo, CloseImagerMoveTo—Drill and Close Image Observer are moved into the correct positions
for the upcoming sample extraction.

2) DrillInsert, StartDrilling—The drill is inserted into the ground and brought into operation.
3) depthReached—This guard expresses an event relevant for the drill control.
4) DrillAcquireSample—Acquires a rock sample for later analysis.
5) DrillMoveHome, CloseImagerMoveHome—Drill and Close Image Observer are moved back into their

‘home’ positions.
6) FinishTarget—The Rover prepares to move on to the next target.
During a sample extraction the regular behavior of the Drill might be disturbed. This is captured in the left branch

of the box in Fig. 5:
1) drillBlocked—The Drill gets stuck.
2) DrillDislodge, drillFreed—If the drill is blocked, attempts are made to dislodge it, freeing it again so that

the drilling can continue.
3) DrillRelease, AwaitingInstructions—If the drill is blocked despite all dislodging attempts, the drill is released

and the Rover awaits new instructions from ground support.

IV. Verification with Games
The model used for the case study has been expressed as a Kripke Transition System [20], formalized in the

following definition.

Definition 1 (Kripke Transition System):
A Kripke Transition System K is defined as a tuple (S, Act, →, I ) over a set of atomic propositions AP, disjoint
from Act, where

1) S are the states of the model;
2) Act is a set of actions;
3) →⊆ S × Act × S are the possible transitions in the model; and
4) a labeling interpretation function I : S → 2AP equips states with atomic propositions.

In the following we will use Computation Tree Logic (CTL) [14] to express desired system properties.
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Definition 2 (Syntax of CTL):
For p ∈ AP, the set of CTL formulas is defined by:

φ ::= p|¬φ|φ ∨ φ|EX[φ]|E[φ U φ]|A[φ U φ]

The semantics of CTL are defined using paths in a Kripke Transition System. These paths represent the possible
execution traces of the system.

Definition 3 (Path):
A path is a sequence of states s0, s1, s2, . . . , such that (si, a, si+1) ∈→ for some a ∈ Act. Sω denotes the set of all
paths. We refer to the (i + 1)th state of a path π ∈ Sω as π [i].

PK(s) = {π ∈ Sω|π [0] = s} denotes the set of paths starting from state s in the Kripke Transition System K .

This allows us to specify the semantics of basic CTL operators as follows.

Definition 4 (Semantics of CTL):
Let K = (S, Act, →, I ) be a Kripke Transition System over atomic propositions AP, p ∈ AP be an atomic
proposition, s ∈ S be a state, and φ, ψ be CTL formulas. The satisfaction relation |= is defined by

s |= p iff p ∈ I (s)

s |= ¬φ iff s |= φ does not hold
s |= φ ∨ ψ iff s |= φ or s |= ψ

s |= EX[φ] iff ∃π ∈ PK(s).π [1] |= φ

s |= E[φUψ] iff ∃π ∈ PK(s).∃j � 0.π [j ] |= ψ ∧ ∀0 � k < j.π [k] |= φ

s |= A[φUψ] iff ∀π ∈ PK(s).∃j � 0.π [j ] |= ψ ∧ ∀0 � k < j.π [k] |= φ

As usual, we can derive the following (dual) operators.
1) φ ⇒ ψ ≡ ¬φ ∨ ψ and φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)

2) AX[φ] ≡ ¬EX[¬φ]
3) EF[φ] ≡ E[true U φ] and AF[φ] ≡ A[true U φ]
4) EG[φ] ≡ ¬AF[¬φ] and AG[φ] ≡ ¬EF[¬φ]
Structurally, CTL operators consist of a path quantifier that specifies whether we are interested in at least one

possible execution trace (E) or every possible execution trace (A), and a path formula describing the behavior along
paths.

1) X (next-time) talks about the next state
2) F (finally) talks about a state that is reached eventually
3) G (generally) talks about the entire path
4) φ U ψ (until) requires φ to hold until ψ holds at some future state, or ψ may also hold immediately

Example: If we intend to expose a satellite in a geostationary (or geosynchronous) orbit, the corresponding model
concerns navigation and stabilization at a Lagrangian point. For this purpose the corresponding model concerns should
have an atomic proposition lagrangePointReached characterizing the states where the satellite is at a Lagrange point.
(Lagrange points are points of zero gravity in two-body systems where small objects like satellites are theoretically
stationary (if only gravity is considered).) A required property for a mission could be “The satellite is guaranteed to
reach the Lagrange Point”, expressed as the temporal property

AF[lagrangePointReached]
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A. Games
In this section, we sketch the basic principles of game-based model checking. An application of this technique to

the Mars rover example is shown in the next section.
In general, model checking is used to decide whether an abstraction of a reactive system, modeled, e.g., using

a transition system or a Kripke structure, satisfies a requirement, specified, e.g., using temporal logics. In the case
of failure, typically error paths are provided as diagnostic information. This is unfortunately not possible, as soon
as branching-time properties are considered, as their violation cannot be explained in terms of paths. Rather, the
diagnostic information has to be generalized to winning strategies of parity games.

Parity games are played by two players, both having complete information—Go or Chess are examples of such
games. They can be used for game-based model checking as introduced in [14], which is available for the full modal
μ-calculus [21] and thus also applicable to, e.g., CTL and CTL∗, which are expressible in μ-calculus.

In a parity game, the game graph derived from a model has game-graph nodes partitioned in two sets, one per
player. Whenever the game reaches a game-graph node, the player who “owns” that game-graph node has to move
to another game-graph node—otherwise he loses the game. Formally, we have the following definitions.

Definition 5 (Game graph):
A game graph G is a tuple (V�, V♦, E, p) where

1) V is a set of nodes
2) V is partitioned in two disjoint sets V� and V♦
3) E ⊆ V × V is a set of edges and
4) p : V → {0, . . . , d − 1} is a function (for some natural d).

The priority function p is needed to determine the winner of the game if the game becomes cyclic; i.e., whenever
the same state will be reached a second time (cf. Definition 7). (Technically, p is used to keep track of fixed-point
alternation. By intuition, the priority of a game-graph node increases if the fixed-point type changes (from least to
greatest or vice versa) when traversing the formula, starting with 0 for least and with 1 for greatest fixed-points,
respectively.)

Definition 6 (Game):
A game consists of a game graph G = (V�, V♦, E, p) with some start node n ∈ V played by two players ♦ and �
according to the following rule:

Player i ∈ {�, ♦} chooses some successor w of the current node v such that (v, w) ∈ E and v ∈ Vi .

Definition 7 (Winning condition):
Player ♦ (the Prover) wins when one of the following conditions is met:

(S) A �-sink is reached.
(C) The game becomes cyclic—i.e., a game-graph node is reached twice—and the least priority appearing in the

cycle is even.
Otherwise player � (the Disprover) wins.

Definition 8 (Winning set):
A set of game-graph nodes Wi is a winning set for player i with i ∈ {�, ♦} if and only if i can win any game starting
in a node v ∈ Wi , regardless of the other player’s moves.

We will now show how the model-checking problem relates to parity games. In the following, the ♦-player acts
as the prover while the �-player acts as the disprover of the considered property. (Other authors sometimes call
the players ∨-player/0-player/Eloise (for the prover), suggesting an existential nature of its behavior and ∧-player/
1-player/Abelard (for the disprover), suggesting an all-quantified behavior.)

B. Relation Between Games and Model Checking
Game graphs originate from a cross-product of the property and the model. Each game-graph node represents

a pair (s, φ), where s is a node from the model and φ is a subformula of the property considered. If the ♦-player
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can win from a given game-graph node, the node belongs to his winning set and because he acts as the prover, this
implies s |= φ.

V♦ contains all the game-graph nodes (s, φ), where φ has disjunctive characteristic, i.e., its outermost operator is
∨, EX, or μ. Dually, V� contains those game-graph nodes where φ has conjunctive characteristic, i.e., ∧, AX, or ν.

Game-graph nodes where φ is an atomic proposition are sinks. They belong to V♦ if s |= φ. Otherwise the
game-graph node belongs to V�.

Edges in a game graph reveal dependencies between (sub)formulas and model nodes in the model-checking
problem. We distinguish three types of subformulas φ:

1) Model-independent (propositional) formulas are of the form φ′ ∧ φ′′ or φ′ ∨ φ′′. Their evaluation does not
depend on the model but solely on the formula: to evaluate it, it suffices to evaluate its subformulas φ′ and
φ′′ at the unchanged model node. Outgoing edges from this type of game-graph nodes target game-graph
nodes (s, φ′) and (s, φ′′): the edge’s source and target game-graph node share the same model node s.

2) Model-dependent subformulas are of the form EXφ′ or AXφ′. They depend on the valuation of the subformula
φ′ at the succeeding nodes in the model. Edges leaving such game-graph nodes lead to game-graph nodes of
the form (s’, φ′) if and only if there is in the model an edge from s to s ′.

3) Fixpoint subformulas σX.φ′(X)—with σ ∈ {μ, ν}—are recursive, thus in the game graph they are unfolded
into φ′[σX.φ′(X)/X] due to their self-referencing nature (φ[x/t] denotes syntactic substitution, i.e., t is
replaced by x in φ). For this reason, two edges are inserted: one from nodes of the form (s, σX.φ′(X)) to
(s, φ′(X)), and one from (s.X) back to (s, σX.φ′(X)).

Winning Conditions: By intuition, the Prover (Player ♦) is played by the user who attempts to verify the property.
Thus, he decides where to go in the game graph at disjunctive game-graph nodes (∨, EX, and μ) while the Disprover
(Player �), played by the model checker, moves at conjunctive game-graph nodes (∧, AX, and ν).

1) If the game ends in a sink in the game graph and the player that should move is unable to do so, he loses the
game (according to winning condition (S) in Definition 7).

2) If the game becomes cyclic, game-graph nodes (a game situation) are reached twice or more. Cycles in the
game graph arise due to fixed-points in the formula. For the evaluation the type (least or greatest) of the
outermost fixed-point of the formula is crucial. Cycles in greatest fixed-points, which very much resemble
an infinite conjunction, belong to the �-player and are won by the ♦-player, who, on the other hand, loses
in case of minimal fixed-points (winning condition (C) in Definition 7).

The following section illustrates the use of strategies of parity games for diagnostics, explaining both validity and
property violation.

V. Game-based Model Checking the ExoMars Rover
In this section we illustrate Game-based Model Checking on the model of the ExoMars Rover and a property

whose violation needs diagnostic means beyond the usual error paths.
In the model of Fig. 5, the green (darker) background indicates the portion describing the desired Reference

Behavior. Formally this is expressed by equipping all the green node with the atomic proposition Ref, which allows
us to formalize the following important requirement:

AG[EF Ref]
meaning that, however, the system evolves (the AG part), it is always possible to reestablish the reference behavior
(the EF part).

In order to understand the following analysis, we need the following fixed-point characterizations:

AG[EF Ref] =ν EF[Ref] ∧ AX[AG[EF Ref]] (1)

and

EF Ref =μ Ref ∨ EX[EF Ref]
where =μ / =ν denotes the least/greatest fixed-point of the equation, respectively.
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Fig. 6 Relevant part of the analyzed model.

Remark: In general, the first characterization would be AG[EF Ref] =ν EF[Ref] ∧ AX[AG[EF Ref]] ∧ EX[true].
However, the subformula EX[true] can be safely omitted because there are no sinks in the analyzed model.

Figure 6 shows the relevant part of the analyzed Acquire Samples Task model. Nodes that are not relevant for the
following discussion are abstractly represented by the cloud.

Let us now investigate the relevant part of the game graph shown in Fig. 7, which uses the following convention:
♦ nodes belong to the ♦-player (since diamond-shaped) and are in its winning set (since white).

nodes belong to the ♦-player (diamond-shaped) but are in the winning set of the �-player (black).
� nodes belong to the �-player (box-shaped) but are in the winning set of the ♦-player (white).
� nodes belong to the �-player (box-shaped) and are in its winning set (black).
The game we consider starts at node DrillBlocked since this is the node where the system has left the reference

behavior. It is played by the following two players:
1) The Prover (♦ player) is convinced that AG[EF Ref] holds,
2) the Disprover (� player) states that AG[EF Ref] does not hold.
They start playing at the game-graph node (DrillBlocked, AG[EF Ref]), the top node (a) in Fig. 7. The game

develops as follows:
1) From (a) � can only move to the next node, EF Ref ∧ AX[AG[EF Ref]] (b). At (b) there are two alternatives

(c) and (c′). As (c′) belongs to the winning set of ♦, � chooses (c) as his next move.
At DrillBlocked AG[EF Ref] does not hold because the fixed-point characterization of the property is not
satisfied. In fact, referring to Equation (1), at least one subformula EF Ref or AX[AG[EF Ref]] is not
satisfied—in this case the latter.

2) Now � moves to the only successor (d).
To disprove AX[AG[EF Ref]] at node DrillBlocked, it is necessary to prove that AG[EF Ref] does not hold
for at least one successor. The only successor to state DrillBlocked is state DrillTriedToDislodge, as shown
in Fig. 6.

3) Now the only possible successor is (e). There, the [ ] player has an important decision. If he picks the wrong
successor (f′), he would lose. Therefore he picks (f).
As seen for game-graph node (a), we unfold the fixed-point, in this case for DrillTriedToDislodge. EF Ref ∧
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Fig. 7 The relevant part of the game graph.
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AX[AG[EF Ref]] can only be falsified via subformula AX[EG[AF Ref]] at this model node. The other
subformula EF Ref holds at Drilling, as it is itself part of the reference behavior. Thus the reference behavior
can be re-established from DrillTriedToDislodge

4) Now � has to decide whether to go to (g) or (z). Since he has no reason for preference, he chooses (g).
To falsify AX[AG[EF Ref]] it is sufficient to find one successor for which AG[EF Ref] does not hold. This is
true for both Drilling and DrillReleased.

5) As before � steps down to (h). Now, choosing (i′) would force him to close a cycle with even priority (g, h,
i′), and therefore to lose according to winning condition (C) (Definition 7). Therefore he picks (i) and turns
over the game to ♦ for the first time.
To falsify EF Ref ∧ AX[AG[EF Ref]] it is sufficient to disprove one subformula as mentioned earlier. However,
since there is no finite counter example for AX[AG[EF Ref]] starting at node DrillReleased it is not possible
to disprove this subformula.

6) The only possible choice for ♦ at (i) is to move on to (k). From there ♦ can only move to (m) or (n). He will
lose if he picks (m) according to winning condition (S). However, once he has moved down to (n) his only
choice is going back to (i) where he loses due to winning condition (C).
To prove that EF[ Ref] holds at DrillReleased it is necessary to establish a finite path back to the reference
behavior. However, since the state does not belong to the reference behavior and only has a reflexive edge this
is impossible.

This shows that

AG[EF Ref]
does not hold: there are system evolutions where no way leads back to the reference behavior. More precisely, the
execution where the drill is eventually lost when all the dislodge attempts fail does not allow any way back to the
reference behavior.

As this particular execution cannot be excluded, there is essentially one natural way for adapting the property
specification:

AG[EF[Ref ∨ DrillReleased]]
which tolerates this unavoidable situation, but maintains the original intent otherwise. It turns out that the revised
property holds of the system. Even better, investigating the corresponding game graph it becomes apparent that the
following stronger property is valid:

AG[AF[Ref ∨ DrillReleased]]
This proves that the reference behavior will inevitably be reached, unless the drill is released.

VI. Conclusion
In this paper, we have shown how to use GEAR, a game-based model checker for the full modal μ-calculus and

more user-oriented derived logics, as a user friendly tool that can offer automatic proofs of critical properties of
such systems. Designers and engineers can interactively investigate the winning strategies resulting from the games.
These strategies reveal in depth information about the connection between the property, the system, and the proof,
both as explanation in case of a successful proof, and as error diagnostics in the case of failure.

We have illustrated the power of our game-based model checker GEAR on a central property pattern for
remote/autonomous (space) systems, with the intuitive meaning that systems cannot run into situations from which
they cannot recover, even with ground support from Earth. This property pattern is ‘branching-time’ in nature, and
cannot be expressed in linear-time logics. Thus it requires diagnostic means beyond classical error paths. The power
of the diagnostic information on the basis of winning strategies has been exploited in order to ‘repair’ the considered
property.

Our case study concerned a task level model of a Mars robot. Models and questions become much more interesting
and realistic, as soon as the robot’s task-level autonomicity controller is included in the modeling. We are planning
to extend our model checking scenario along these lines.
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